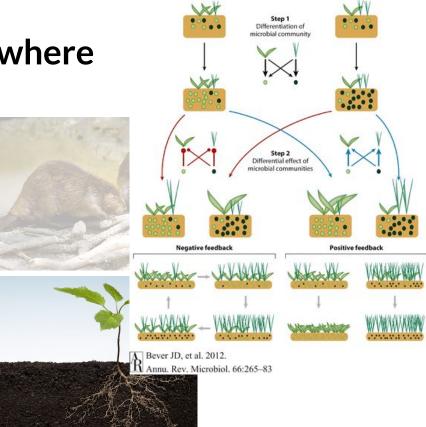
Coupled metapopulation dynamics with patch modification and memory

Zachary R. Miller and Stefano Allesina University of Chicago zachmiller@uchicago.edu

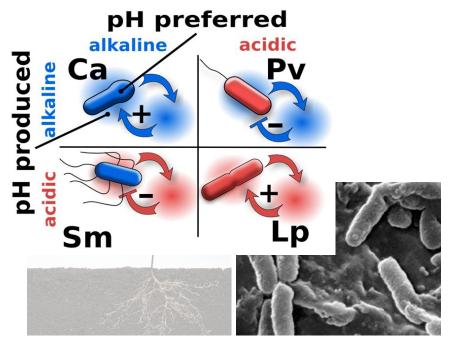
ESA | August 2021

- All organisms modify their environment, and react to environmental state
- Environmental modification mediates interactions in many communities
- Classical ecological theory studies some special cases (e.g. resource competition), usually *locally*
- What do community dynamics look like on the landscape scale?

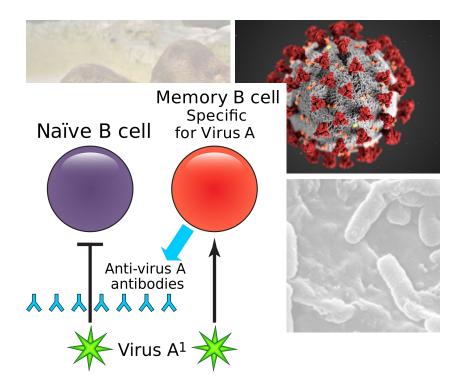
- All organisms modify their environment, and react to environmental state
- Environmental modification mediates interactions in many communities
- Classical ecological theory studies some special cases (e.g. resource competition), usually *locally*
- What do community dynamics look like on the landscape scale?



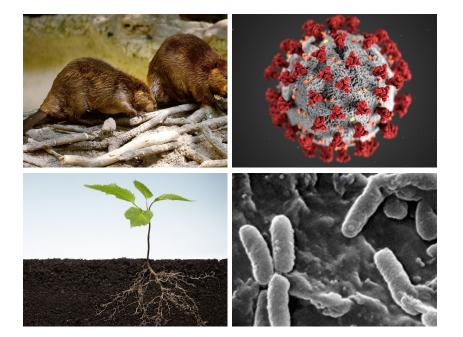
- All organisms modify their environment, and react to environmental state
- Environmental modification mediates interactions in many communities
- Classical ecological theory studies some special cases (e.g. resource competition), usually *locally*
- What do community dynamics look like on the landscape scale?



- All organisms modify their environment, and react to environmental state
- Environmental modification mediates interactions in many communities
- Classical ecological theory studies some special cases (e.g. resource competition), usually *locally*
- What do community dynamics look like on the landscape scale?



- All organisms modify their environment, and react to environmental state
- Environmental modification mediates interactions in many communities
- Classical ecological theory studies some special cases (e.g. resource competition), usually *locally*
- What do community dynamics look like on the landscape scale?

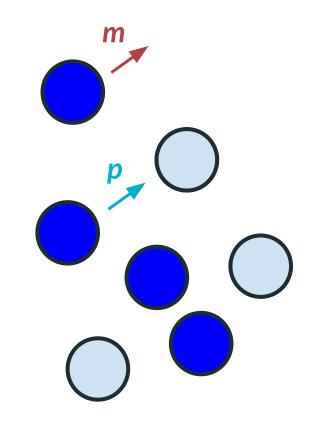


Metapopulation models

Levins (1969) introduced a simple model for **migration** and **extinction** in a landscape:

$$\frac{\frac{dx}{dt}}{t} = -m \, x + p \, x \, (1 - x)$$

ExtinctionFractionColonizationFractionrateoccupiedrateunoccupied



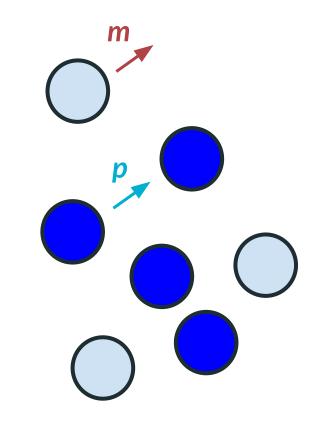
Metapopulation models

Levins (1969) introduced a simple model for migration and extinction in a landscape:

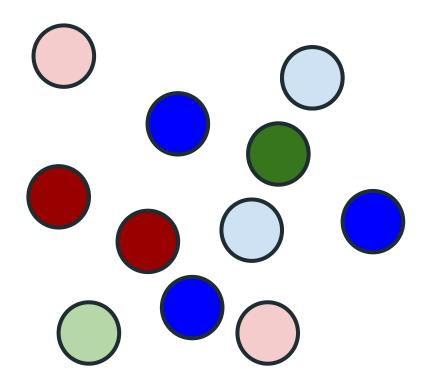
$$rac{dx}{dt} = -m\,x + p\,x\,(1-x)$$

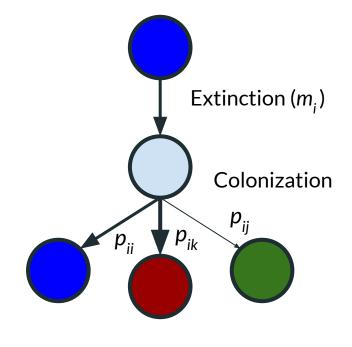
An equivalent (SIS-like) description:

$$egin{aligned} rac{dx}{dt} &= -m\,x + p\,x\,y \ rac{dy}{dt} &= m\,x - p\,x\,y \end{aligned}$$



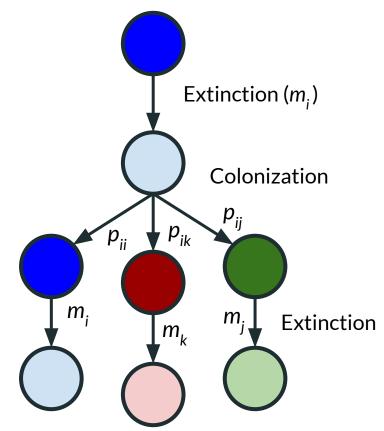
Patch modification and memory



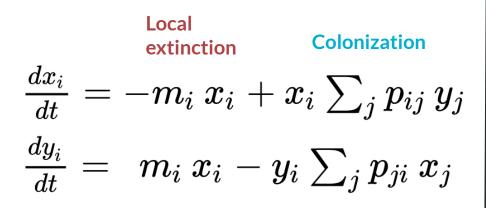


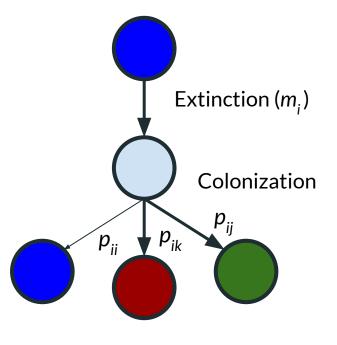
Patch modification and memory

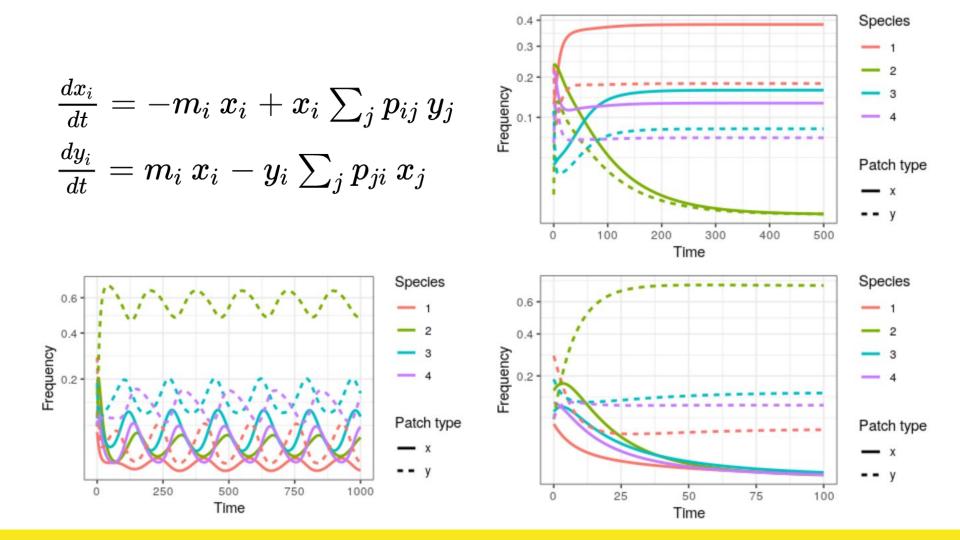
- Patch modification is incorporated implicitly, through state-specific colonization probabilities (p_{ii})
- Patch state depends on the last occupant only
- Patch "memory" is permanent until re-set by new colonizer
- Extinction/mortality rates (m_i) are species-specific, and insensitive to patch state

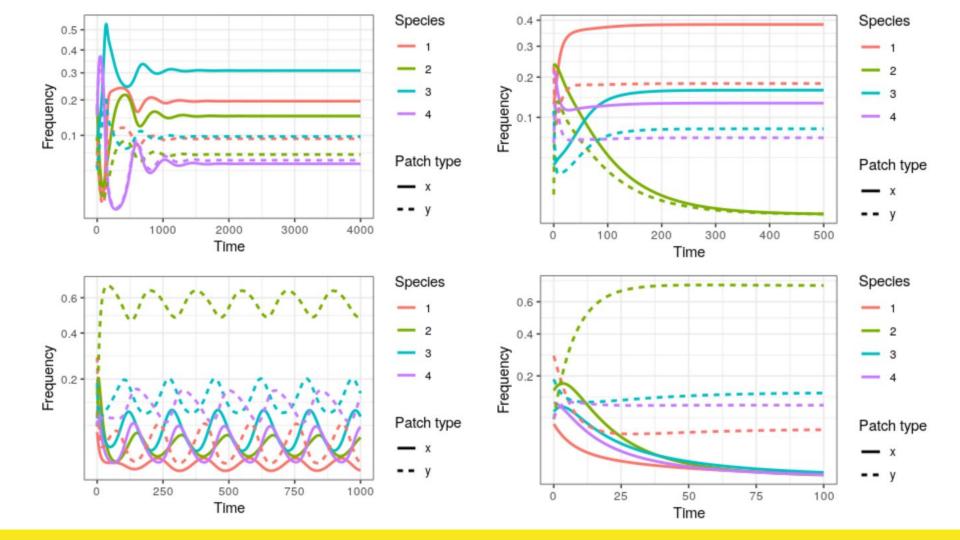


Patch modification and memory









Long-term dynamics

Existing literature focuses on **positive** vs. **negative** feedbacks:

Patches last occupied by a conspecific might have:

- Suitable abiotic conditions (e.g. pH, fire)
- Symbionts / mutualists present
- Immunodeficiency or antibody-dependent enhancement

...but also

- Depleted or degraded resources / environment
- Specific predators / parasites/ pathogens present
- Specific immunity

Positive feedbacks should be destabilizing, while negative feedbacks should be stabilizing (enhance coexistence)

A minimal model where $m_i = m$, and p_{ij} depends only on i = i or $i \neq j$

$$P=lpha I+eta 11^T = egin{pmatrix} lpha+eta & eta & eta & \ldots\ eta & lpha+eta & eta & \ldots\ eta & eta & lpha+eta & eta & \ldots\ eta & eta & lpha+eta & lpha+eta & \ldots\ eta & eta & lpha+eta & lpha+eta & \ldots\ eta & eta$$

$$egin{array}{ll} y^* &= rac{m}{lpha+eta\,n} \ x^* &= rac{1}{n}-y^* \end{array}$$

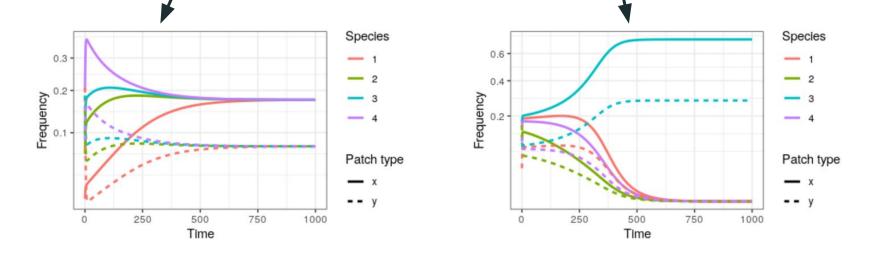
Feasibility requires:

$$m < \beta + \frac{\alpha}{n}$$

$$P = lpha I + eta 11^T$$

• When will the system approach the *n*-species equilibrium?

- When will the system approach the *n*-species equilibrium?
- Consistent with our intuition, negative feedbacks maintain diversity when $\alpha < 0$ and positive feedbacks diminish it when $\alpha > 0$



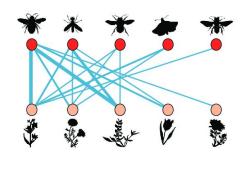
 $P = \alpha I + \beta 11^T$

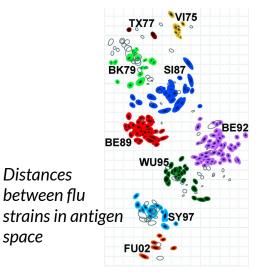
- $P = lpha I + eta 11^T$
- When will the system approach the *n*-species equilibrium?
- Consistent with our intuition, negative feedbacks maintain diversity when $\alpha < 0$ and positive feedbacks diminish it when $\alpha > 0$
- Using an embedding technique from dynamical systems theory, we can prove that the coexistence equilibrium is globally stable for $\alpha < 0$
- Demographic differences between species (i.e. m_i ≠ m_j and/or α_i ≠ α_j) never affect stability

<u>Key question:</u> How do we generalize the idea that stable coexistence occurs whenever conspecifics have a disadvantage recolonizing patches?

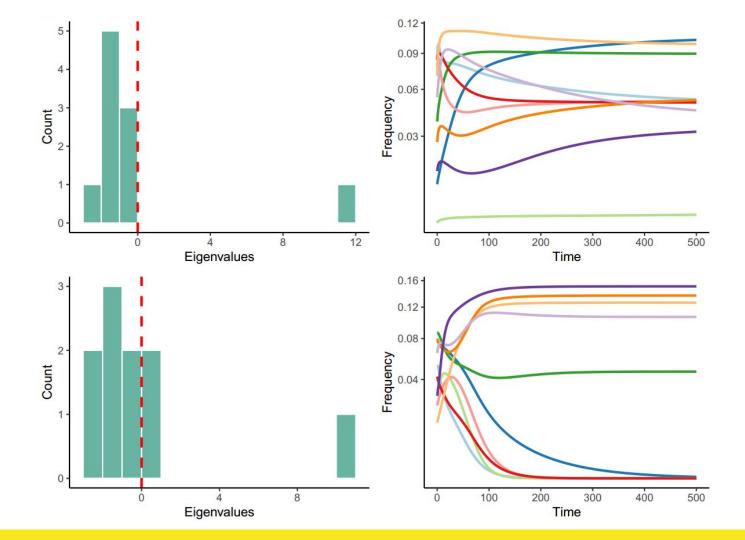
Arbitrary symmetric P $\checkmark p_{ij} = p_{ji}$

- When m_i = m, we can perform local stability analysis for any number of species
- The coexistence equilibrium is stable if and only if *P* has exactly 1 positive eigenvalue



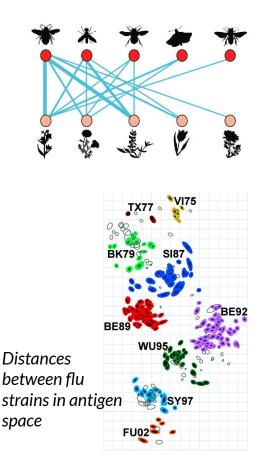


Frost et al. TREE (2019) modified from Smith et al. Science (2004)



Arbitrary symmetric P

- When m_i = m, we can perform local stability analysis for any number of species
- The coexistence equilibrium is stable if and only if *P* has exactly 1 positive eigenvalue
- Numerical evidence indicates that this condition is also sufficient for global stability, unaffected by variation in m_i
- A *necessary* condition is $p_{ij} > \min(p_{ii}, p_{jj})$
- Eigenvalue condition generalizes the intuitive notion of "negative feedbacks" to complex communities

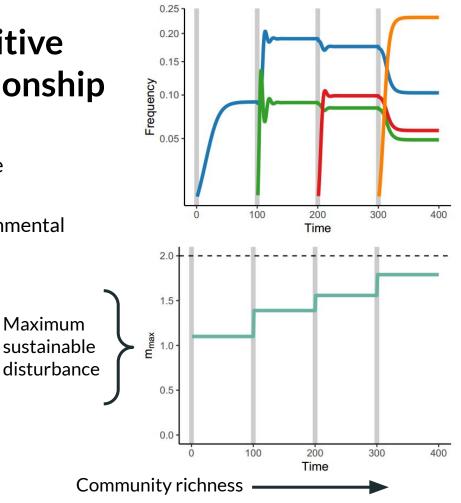


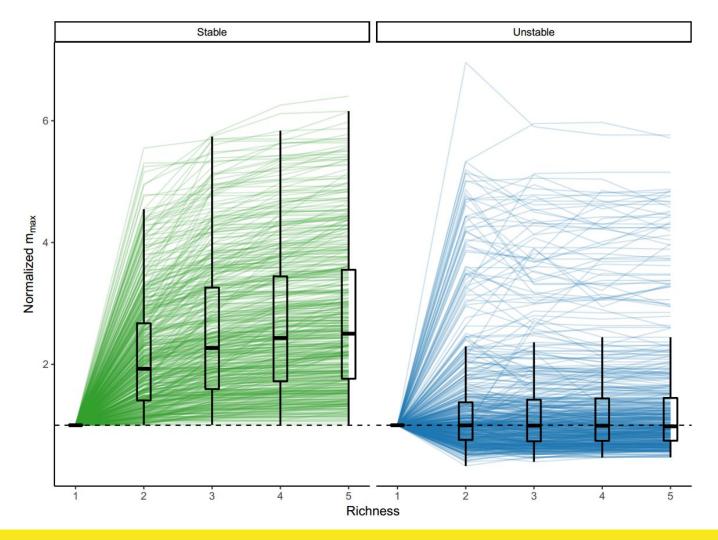
Coexistence induces a positive diversity-robustness relationship

- More diverse communities can tolerate higher local extinction rates
 - e.g. more disturbance, lower environmental quality, etc.

Recalling the simplest model....

$$m < m_{max} = eta + rac{lpha}{n}$$



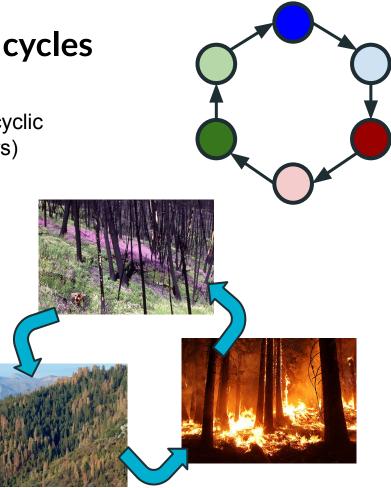


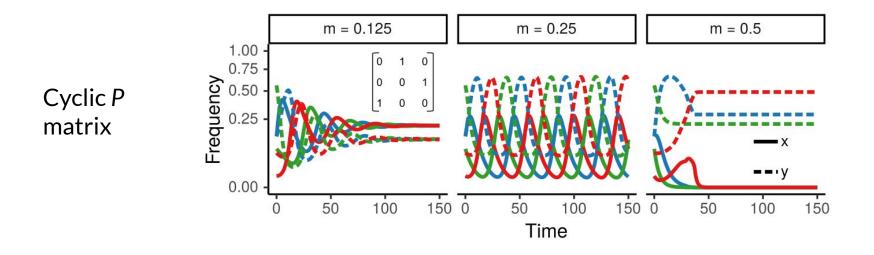
Diversityrobustness relationship in 500 stable and 500 unstable communities

Nonsymmetric P: successional cycles

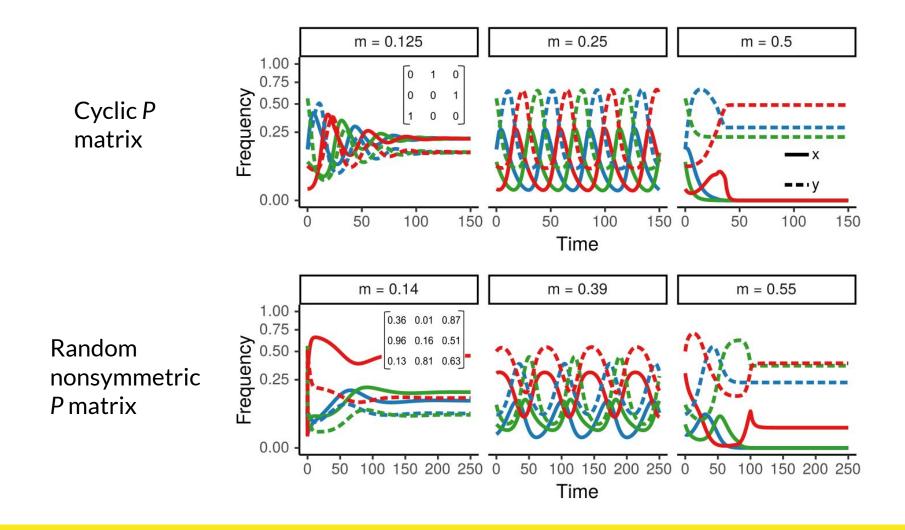
- An interesting special case is when *P* is a cyclic permutation matrix (e.g. rock-paper-scissors)
- A "toy" model for successional dynamics

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$





As *m* grows, the dynamics shift from stable equilibrium (left), to stable limit cycles (center), to instability (right)



Conclusions

- We introduce a **flexible** and **tractable** model for the dynamics of "ecosystem engineers" interacting in a landscape
- For symmetric *P*, the condition *P* has exactly 1 positive eigenvalue naturally generalizes the notion of "negative feedbacks for all species"
- Stability condition induces a **positive diversity-robustness** relationship
- For nonsymmetric *P*, dynamics can be much more **complex**

More details: Metapopulations with habitat

modification (bioRxiv)

Thank you!

And thanks to:

Carlos A. Serván Paula Lemos-Costa Abby Skwara Pablo Lechón Jacopo Grilli Theo Gibbs

Dan Maynard

Stefano Allesina (https://allesinalab.uchicago.edu/)

for their contributions to this project.

Contact:

zachmiller@uchicago.edu https://zacharyrmiller.netlify.app

This work was supported by an NSF GRFP (DGE-1746045)