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Ecosystem engineering everywhere

e All organisms modify their environment,
and react to environmental state

e Environmental modification mediates
interactions in many communities

e Classical ecological theory studies
some special cases (e.g. resource
competition), usually locally

e What do community dynamics look like
on the landscape scale?
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Metapopulation models

Levins (1969) introduced a simple model for
migration and extinction in a landscape:
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Metapopulation models

Levins (1969) introduced a simple model for
migration and extinction in a landscape:
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Patch modification and memory

Patch modification is incorporated
implicitly, through state-specific
colonization probabilities (p,.j)

Patch state depends on the last
occupant only

Patch “memory” is permanent until
re-set by new colonizer

Extinction/mortality rates (m.) are

species-specific, and insensiti’ve to
patch state
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Patch modification and memory
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Long-term dynamics

Existing literature focuses on positive vs. negative feedbacks:

Patches last occupied by a conspecific

might have: ..but also
e Suitable abiotic conditions e Depleted or degraded
(e.g. pH, fire) resources / environment
Symbionts / mutualists present e Specific predators / parasites/
Immunodeficiency or pathogens present
antibody-dependent e Specificimmunity
enhancement

Positive feedbacks should be destabilizing, while negative
feedbacks should be stabilizing (enhance coexistence)



Long-term dynamics: The simplest case

A minimal model where m. =m, and p; dependsonlyoni=iori#j
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Long-term dynamics: The simplest case
P = ol + p117F

e When will the system approach the n-species equilibrium?
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Long-term dynamics: The simplest case
P = ol + p117F

e When will the system approach the n-species equilibrium?

e Consistent with our intuition, negative feedbacks maintain diversity
when «a < 0 and positive feedbacks diminishitwhen o > 0

e Using an embedding technique from dynamical systems theory, we can
prove that the coexistence equilibrium is globally stablefor a < 0

e Demographic differences between species (i.e. m, #m, and/or a. # aj)
never affect stability

Key question: How do we generalize the idea that stable coexistence
occurs whenever conspecifics have a disadvantage recolonizing patches?
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Arbitrary symmetric P
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e Whenm, = m, we can perform local stability analysis for
any number of species
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e Numerical evidence indicates that this condition is also
sufficient for global stability, unaffected by variation in m,
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Coexistence induces a posi

diversity-robustness relationship

e More diverse communities can tolerate
higher local extinction rates

o e.g.moredisturbance, lower environ
quality, etc.

Recalling the simplest model....
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Nonsymmetric P: successional cycles

e An interesting special case is when P is a cyclic
permutation matrix (e.g. rock-paper-scissors)

e A“toy” model for successional dynamics
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As m grows, the dynamics shift from stable equilibrium
(left), to stable limit cycles (center), to instability (right)



Cyclic P
matrix

Random
nonsymmetric
P matrix

o

ency

-]

Freq

Frequency

1.00 A

0.50 -

45

n '-----------

Y w— X

--Iy

m=0.14 m = 0.39 m = 0.55

1.00 - 0.36 0.01 087
0.75 - FZy

0.96 0.16 0.51 -
0.50 - " T2V

0.13 0.81 063 "‘( epupp———

s By

0.00 -

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Time



Conclusions

e Weintroduce aflexible and tractable model for the dynamics
of “ecosystem engineers” interacting in a landscape

e For symmetric P, the condition P has exactly 1 positive
eigenvalue naturally generalizes the notion of “negative
feedbacks for all species”

e Stability condition induces a positive diversity-robustness
relationship

e For nonsymmetric P, dynamics can be much more complex

More details:
Metapopulations
with habitat
modification
(bioRxiv)
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